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EXECUTIVE SUMMARY

Transportation agencies have traditionally considered the pavement condition index across the network,
network travel time and safety as three measures for determining the need for improvement actions.
With limited funding availability, achieving a desired level of service across all measures of network
quality indicators requires an effective resource allocation decision making scheme whenever network
intervention action is needed. This research aims at building models that can be utilized for resource
allocation decision making under different service levels scenarios. Assuming a certain level for each
measure of service quality, the model is expected to devise actions that will satisfy the desired quality
level under certain risk level. In this research, Conditional Value at Risk (CVaR) is used to quantify and
measure the risk in pavement performance and travel demand. Such an approach requires defining and
applying an effective level of service for each network quality measure based on risks involved. In this

study, B-CVaR is used to quantify and measure risk.

In the second chapter, a method of constructing risk-based rehabilitation policies for a network
of pavement facilities that ensures a specific quality level is introduced. The model is formulated in the
Markov Decision Process framework with risk-averse actions and transitional probabilities that are
subjected to the uncertainty in the pavement performance. When it comes to making short-term
rehabilitation decisions when budget is limited, transportation agencies can either chose to distribute
their resources on the sole basis of cost/benefit ratios, or base the recourse allocation decisions on
narrowing the gap among the quality level of facilities. Comparing the results from two models that each

representing these approaches clearly indicates the advantage of fair allocation.

In the third chapter, network mobility enhancement during capacity expansion decisions is
discussed. Given a network of m links, several models to minimize the total travel time over all paths
that connect origin destination pairs are presented. All models take the risk in travel demand realization
into consideration. The computational results from the three models shows that system optimal
network design problem with minimum path travel time can provides the best travel time over all paths
connecting the same O-D pair. Transportation planners can use the results from this model and

determine the recourses required to further improve path travel times.

In the forth chapter, network safety enhancement provisions are incorporated into capacity
expansion decisions. The two safety measure indicators considered in this study are fatal and injury

accident rate and property damage accident rate.






CHAPTER 1: INTRODUCTION

The network of transportation infrastructure plays an essential role in the nation's overall economy.
Seventy-four percent of the $8.4 trillion worth of commodities in the U.S. is transported by trucks on the
state’s highways. The current transportation infrastructure is the result of several decades of planned
development, and now transportation agencies need to dedicate an ample amount of resources to
maintain it in acceptable condition. In 2000, the total expenditure by all levels of government on
transportation infrastructure was $64.6 billion. However, the Federal Highway Administration (FHWA)
estimates that the spending by all levels of government would have to increase by 17.5% to reach its
projected $75.9 billion cost-to-maintain level, and 65.3% to reach its $106.9 billion cost-to-improve
level. (1) The existing funding limitations highlight the importance of effective resource allocation
decisions. The goal of this research is to develop optimization models that will help network planners in

making cost effective resource allocation decisions whenever network intervention actions are

necessary.
B-CVaR on Travel B-CVaR on Travel B-CVaR on Pavement
Demand Demand Performance
v \4 v
Network-Level Resource Allocation Decisions
\ 4
N
Network Mobility Network Safety Network Pavement
Enhancement Enhancement Rehabilitation
/

FIGURE 1 Optimal Network-Level Rehabilitation and Expansion Decisions



Figure (1) shows the methodological framework under which this study has taken place. The network-
level decision making framework is expected to improve quality of service in terms of pavement

condition, mobility and safety.

This report is organized as follows: in chapter 2, a method of constructing risk-based
rehabilitation policies for pavement facilities that ensure a specific quality level is presented. The model
is formulated in the Markov Decision Process framework with risk-averse actions and transitional
probabilities that are subject to the uncertainty in the pavement performance model. The well known
Conditional Value at Risk (CVaR) is used as the measure of risk. The steady-state risk-averse
rehabilitation policies are modeled assuming no budget restriction. To address the short-term resource
allocation problem when the required resources to apply long-term actions exceeds the available short
term resources, two LP models are presented to generate short-term network-level polices with
different objectives.

In chapter3, several optimization models to allocate resources for maximum mobility under
uncertainty in network travel demand are presented. Any change in network condition (either change in
capacity or considerable change in pavement condition) will change the driver’s route choice or user

equilibrium; therefore, network mobility can be enhanced during capacity expansion decisions.

In chapter 4, based on the relationship between network flow accident rates, two optimization models
to improve safety during network expansion decision making is presented. Finally, the summary and

conclusion of the results is provided in chapter 5.
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CHAPTER 2: RISK-BASED NETWORK-LEVEL
REHABILITATION DECISIONS

INTRODUCTION

Maintenance and rehabilitation (M&R) activities are generally capital intensive projects in particular for
severely utilized facilities. While determining and deploying optimal M&R policies has always been an
important part of pavement management systems, the existence of pavement facilities with poor
condition along with the budget limitation makes the resource allocation decisions even more
important. Over the years a number of models were developed to obtain long-term steady-state policies
based on the Markov Decision Process (MDP). However, these models do not take into account risk
associated with the effectiveness of rehabilitation actions. They rely on estimated transitional
probabilities and short-term policies that seek to take the current condition to the steady state
condition, hence their effectiveness is strongly dependent on the accuracy of the deterioration process

predictions.

The objective of this chapter is to develop a modeling process for determining long- and short-
term rehabilitation policies that take into account the risk associated with pavement performance and
use the Conditional Value at Risk (CVaR) as a risk measure for both long- and short- term resource
allocation decisions. Such process links the steady-state policies from MDP and the short-term network

level allocation.

BACKGROUND

Markov Decision Process (MDP) has been the primary modeling framework for determining the network
M&R policies. State-of-the-art infrastructure management systems include MDP to model the network
and use dynamic programming techniques to solve for optimal policies. The first application of MDP for
pavement maintenance was introduced by Arizona Department of Transportation, in 1979. ADOT
developed a pavement management system to improve the allocation of its limited resources while
ensuring a certain level of pavement performance quality. The data for the model is gathered based on

the inspection of the current condition of the facilities as well as the expectation of the future condition
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given an action among a finite set of actions performed on the facility. The description of the model is

presented in (2).

M&R policy optimization models based on the MDP framework can be found in Carnahan et al.
(3), Feighan et al. (4), Gopal and Majidzadeh (5). In such formulations, facility states are considered in
discrete states and the deterioration process is represented by discrete time transitional probabilities.
The Markovian assumption of these models implies that the condition of the facility at time t+1 only
depends on the condition in the start of time t and the action applied to the facility. Madanat and Ben-
Akiva (6), Madanat (7) introduced the latent Markov decision processes to account for uncertainly in the
current measurement of the facility. Mbwana and Turnquist (8) presented a network level optimization
model based on MDP for pavement management systems with suggestions for the short-term allocation
of resources. Guigner and Madanat (9) presented a model for joint optimization of the M&R and
improvement policies in a network of infrastructure facility. Smilowitz and Madanat (10) extended the
LMDP model to policies that include network level constraints. Durango et al. (11) combined this model
with the inspection decisions and presented an adaptive optimization model to find the optimal policies

under performance model uncertainty.

In these models, deterioration is represented as transitional probabilities that are either
estimated from expert opinion or empirical data for every single facility. A common approach to solve
these models is by making the infinite time horizon assumption and transforming the MDP into a linear
programming model for which efficient algorithms exist. A problem arises when this approach is
implemented on the network level with the short-term budget restriction. Backward recursion is the
common approach to solve MDP in the finite horizon. Adding budget restriction will result in the
exponential increase of state variables and makes it computationally expensive to solve the model to

optimality.

Another framework to model M&R activities is the optimal control framework with continuous
maintenance actions and states. The objective of these models is to minimize the total life cycle costs
over a specific time horizon. Tsunokawa and Scofer (12) introduced an optimal control approach to
approximate the optimal timing and intensity of maintenance actions. Li and Madanat (13) presented
optimal policies under steady state condition and Ouyang and Madanat (14) assuming deterministic
deterioration modeland provided the exact and approximate optimal solutions under finite horizon
condition while rehabilitation policies are obtained. The models in this framework are specific to single

facility with no budget restriction assumption.
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Deterioration Uncertainty

In MDP based models, the deterioration process is represented by the transitional probabilities. Two
common approaches to estimate transitional probabilities are by expert opinion or from empirical data.
Both approaches are prone to ample errors and subjectivity and can result in solutions that may not be

reliable.

Deterioration of pavement structure is a complex process. For example, environmental factors
and traffic load are two factors in the pavement roughness deterioration and are associated with high
level of uncertainty. Several works in the literature specifically address the uncertainty in the pavement
performance model. Li et al. (15) discussed the importance of accurate prediction of pavement
deterioration in the determination of pavement M&R intensity and frequency policies and presented
the Nonhomogeneous MDP to determine pavement deterioration rates in different stages. Majidzadeh
and Harper (16) used Bayesian updating to update the parameters of the deterioration model. Kuhn and
Madanat (17) proposed robust optimization models to obtain policies that are valid for a collection of
transitional probabilities. Durango and Madanat (18) introduced an optimal control model where the
uncertainty in the deterioration model is represented by a probability mass function of deterioration
rates and instead of updating the parameters of the deterioration model, the probability mass function
of deterioration rates is updated. Madanat et al. (19) proposed an open loop feedback control model in
which model parameters are updated sequentially after every inspection round. Durango and Madanat
(20) assumed deterioration as an unknown mixture of known performance models taken from a finite
set of performance models and presented an optimization model to find joint inspection and

maintenance polices.

In this study, the deterioration process parameters are assumed to be random variables with
known distributions. To manage the uncertainty in the model, a qualitative measure of risk is developed
to obtain rehabilitation actions that satisfy a certain performance level within a specific planning
horizon. This quantitative measure is essential in both finding the optimal steady state polices that
minimize the long-term cost of the network rehabilitation actions and in the short-term budget

allocation problem. The purpose of the next section is to define and construct such measure of risk.

CONDITIONAL VALUE AT RISK

Value at Risk is a widely used measure of risk that specifies the maximum risk in a certain confidence

level. Conditional Value at Risk (CVaR), also known as Mean Shortfall or Tail VaR is an alternative
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measure of risk with more attractive properties such as sub-additivity and convexity, which makes it a
good measure of risk for optimization modeling. By definition, §-CVaR is the expected loss in the 8
percent of the worst case scenarios. The relationship between VaR and CVaR and how they can be

calculated in our model follows.

Consider a network of M facilities with i = 1,.., M the index set of facilities and define x; be the
amount of budget allocated to facility i. Denote by f;(x;, s;) the loss function associated with decision
variable x; and the random variable s; € S;, where s; is the set of all possible condition states of the
facility i. The probability distribution of s; is assumed to have density of p(s;). The probability that

fi(x;, s;) does not exceed threshold « is given by (21):

W(x;, a) = f p(spds; (1)

fxisp=a

As a function of « for fixed x;, W is the cumulative distribution function for the loss associated
with x;. The f-VaR and -CVaR for facility i and the loss random variable associated with x; and any

probability level § in (0,1) is denoted by az(x;) and ¢pg(x;):

ag(x;) = min{a € R:W(x;, a) = f} (2)

Ppplx) =1 —-p)" f(xi,sp(sds; (3)

fCxepsp) zap(xy)

In this study, pavement roughness is considered as the only measure of pavement quality. As
Equation 3 indicates, to calculate 5-CVaR for each facility, the probability distribution of pavement
roughness at the end of the planning horizon must be present. Figure (2) depicts how risk-based
rehabilitation decisions are made using CVaR as the measure of risk. First, for each facility the

distribution of future states at the end of planning horizon for each rehabilitation action is simulated.

14



From these distributions, the actions that satisfy the CVaR level with their corresponding transitional
probabilities are derived. Based on these data, the long-term model produces the steady-state risk-
averse solution assuming no budget constraint for each facility. At any given year, the transportation
agency reviews the facilities that are due for rehabilitation action and checks to see if sufficient
resources are available to implement the optimal solutions. If there is a budget shortage, a resource
allocation decision is made by solving one of the short-term models. Each part of the models will be

discussed with more details in the next sections.

Solve the long-term
model to find optimal

steady-state risk-averse

For each facility:
<@— Set of N facilities, i=1..N
Generate the distribution of future

states by simulation and find risk-averse

actions and transitional probabilities <€— CVaR Level (level of service)

rehabilitation policies
Determine resources
required to implement

Long-term policies
¢ Short-term Solution:

Minimax Model

Budget yes Find CVaR approximation
Sh ? o Budget
(i for each facility
Short-terin Solution:
no
¢ Knapsack Model
Implement

long-term policies

FIGURE 2 Conceptual Decision-Making Model

LONG-TERM RISK-AVERSE DECISIONS

Determining the optimal long-term rehabilitation policies is the initial step in modeling process. It is
assumed that the long-term rehabilitation policies are designed to keep the network in a stable
condition in the steady-state. MDP is the primary framework for modeling M&R policies in which
pavement performance is represented by transitional probabilities under different actions. The

objective of most of the models in the literature is to minimize the total cost that consists of both

15



agency and user cost. To deal with uncertainty in the deterioration process, this objective can be
replaced by finding rehabilitation policies that maintain the system in an acceptable quality level over
any given period of time with minimum cost. In this model, instead of seeking the tradeoff between
users’ costs and the agency cost, optimal rehabilitation decisions can be generated based on the

guaranteed pavement quality level to avoid the subjectivity that users’ costs model brings.

To construct such a model, two main inputs in MDP must be altered. First, the action set must
only consist of actions that always satisfy a certain level of risk. Second, the transitional probabilities
corresponding to the actions in the action set should be estimated from the probability distribution of
the future states at the end of the planning horizon. The pseudo-code for generating the risk-averse

actions and transitional probabilities by simulation is shown in Figure (3).

- Given: The deterioration function y = f(s,,7,X); X ~ N(u, o)

- Initialize: f-CVaR, Planning Horizon 7, Initial State s, A= {1..N} set of
actions, S= {1..M} set of states, A’, II' updated actions and transitional
probability sets.

Begin
A« 0
<9
Za «— OO
Foreach a € A
For(i=1:MAX)
Generate random number x;
Yi < f(s0,7, ;)
end;
¢, < Generate distribution of future states for action a
zq < B-CVaR {¢}
If (zg < B — CVaR){
A «AUa
« Transitional probabilities corresponding to a
M 1

T[aB—CVaR

U T[aB—CVaR

End

FIGURE 3 Pseudo-Code for Determining Risk-Averse Transitional Probabilities

Risk-Averse Actions

To guarantee that the network will always satisfy the quality requirement, all actions in the action set
must be risk-averse. The action set includes actions that start from the minimum overlay that will satisfy
the risk requirement, to the maximum feasible rehabilitation intensity. Using simulation, the distribution

of facility condition with an initial quality level under application of rehabilitation actions is simulated.
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From the simulation results, for each initial state the corresponding actions that satisfy the specified risk
are determined and the corresponding transitional probabilities are computed. The optimal risk-averse
polices can be obtained by solving the MDP with the new transitional probabilities each representing a

risk-averse action.

In the case when the distribution of facility condition under different rehabilitation actions
continues, the state-space should be discretized by a finite grid approximation to solve the model under
the MDP framework. In the next section, the linear programming formulation of MDP for the long-term

steady-state risk-averse policies is presented.

Model Formulation

A Markov Decision Process is a tuple, (S, 4, P(:,), C(+,-)) in which the state of the system in period t is
{S;,t =0,1,2,..}and S = {1,.., M} is the finite state-space, A = {1,.., N} is the finite action space.
Applying action A; = a in state S; = i results in a cost C(i,a). P,(i,J) is the probability that action a in
state i at time ¢ will lead to state j at time t + 1. Itis assumed that the system has the following

Markov property:
Po (L)) = PSe1=J1Se = LA =0a) = P(Se41 =7 1St = LA = Se-1,4¢-1,--, 40, So)

In a stationary infinite horizon Markov decision process, the steady state probabilities are
independent of the initial state of the system. Let A be the discount factor and the policy f be a mapping
from action space to state space i.e an action a is chosen if the system is in state i. In the long run, the
average cost per stage should be constant regardless of the initial state. The total expected discounted

cost under policy f is given by the following value function (22):

vl (D) = E !Z T C[SnA)ISo =i1|, i€ (4)
n=1

The optimal value function, is given by
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v (i) = inf f¢ Fv{(i) (5)

where F is the set of all possible policies.

Leta(j), j € S be positive scalars such that ¥ ;e sa(j) = 1, and P, (i, j) represent the

transitional probabilities corresponding to action a, the following LP can be used to solve (5):

max,-ezs a) v() -
subject to
v(j) - ZAPa(i, Dv(G) < c(i,a) j€ S,a€ Aa) (6a)
i€S
(6b)

v(j) = 0, jE€ S

Let x(i, @) be the average number of periods during which facility is in state i and action a is

taken, the dual linear program can be formulated as follow:

Min ). ) cGa)x(,a) o)

i€ S ac A(D)

subject to

Z x(i,a) —z z ARG )x(ia) = o, JES, (7a)

ac A(l) i€ S ac A(D)
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a-p Z f(xi,s)Py(si, )ds; <R jE S,a€e A (76)

fxisy) zap(x;)

The solution of (7) - (7b) is a one-to-one mapping from action-space to state-space. This solution
represents the long-term M&R policies, designed to keep the network in a stable condition in the infinite
time horizon. The budget restrictions are relaxed for the long-term model but they can be added as a

constraint to the model.

Short-Term Budget Allocation Decisions

While in the steady state facilities will be in a good condition, in the short-term, there will be facilities
with a poor condition that require intensive rehabilitation. The required resource to apply these actions
in most cases exceeds the available annual or short-term budget. In such cases, transportation agency
has to make the short-term resource allocation decisions. Either resources should be assigned fully to
some facilities while rehabilitation action is deprived to the others, or resources should be distributed
among facilities to attain a lower CVaR variation across facilities in the network. The short-term model is
based on the linear approximation of the CVaR in the short-term. The method of finding these

approximate functions is discussed in the next section.

CVaR Approximation

To determine the amount of resources required to achieve a certain level of CVaR for each facility, the

approximation of CVaR subject to different actions is required. This approximation can be derived from
the distribution of roughness under different actions in the short-term. First, the CVaR level that can be
achieved under each action is calculated from the corresponding distribution. The CVaR approximation
function can be obtained from linear or polynomial fitting of these discrete points. Figure (4) shows the
linear approximation of CVaR under different rehabilitation actions. In the next section, the short-term

model formulations are presented.
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Denote by L(x;) the linear approximation of the short-term CVaR, by x; the budget allocated to facility

i, by By the annual budget available to agency and by $-CVaR the upper bound on the network CVaR

and by f — CVaR (i) the CVaR corresponding to facility i. (8) - (8d) is the Minimax model formulation to

minimize the highest CVaR of all facilities.

Subject to

min 8 — CVaR

B—CVaR(i) < B — CVaR, iel
L(x;) =B — CVaR(i), i€l
X < BT
i€l
LB, < x; < UB;, i€l

20

(8)

(8a)

(8b)

(8c)

(8d)



Constraint (8a) bounds all facilities by the highest CVaR, constraint (8b) gives the CVaR with the
allocated budget, and constraint (8c) limits the sum of allocations by the total budget and constraint

(8d) bounds allocation by the lower and upper bounds.

The model in (9) - (9c¢) is the Knapsack model formulation with the objective of minimizing the
total CVaR over all facilities. Constraint (9a) gives the CVaR for the allocated budget, constraint (9b)

limits the sum of allocations, and constraint (9c) bounds allocation by the lower and upper bounds.

minz B — CVaR (i) (9)
i€l
subject to
L(x;) < B— CVaR(i), i€l (9a)
in < BT (9b)
i€l
LB; < x; < UB;, iel (9¢)

The Minimax model yields a solution with lower variation in the quality level of facilities across
the network in the cost of slightly lower total quality level for all facilities. The Knapsack model will
generate a solution with high variation among the quality level of facilities but with the total CVaR that is

lower than the Minimax model. The detail of the numerical results is discussed in the next section.

Numerical Results: Network Rehabilitation Decisions

The continuous pavement state model proposed in (17) for overlay and roughness improvement is used
for computational results. Let G (w;, sp) denote the roughness after applying w; mm of overlay on the

pavement [ with s as the initial roughness, then:
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g1Wj (10)

Glwys9) = —2t
o g2 +83/50

where: w; < g,80 + g3,

g, = 0.66, g, =055, g5 =183 (11)

The agency cost function:

M(w) = mw +m,
(12)

m; = 3000 $ /km, m, = 150,000 $ /km

The deterioration model is generally considered as an exponential function of time as follows:

In this analysis, a network of 20 facilities with different initial conditions is considered. The

network is depicted in Figure (5). The number on each edge represents the initial roughness of the

facility. The deterioration parameter f is assumed to be a random variable normally distributed with

u=.05 and o2 = .01 for all facilities. First, the long-term risk-averse rehabilitation policies that satisfy the

90%-CVaR level of 45 Ql (Ql = 13 IRI) is determined as follows.

FIGURE 5 Network of Pavements

The continuous state-space of [20,50] interval is discretized into a grid of 16 discrete points. For

each roughness level, the distribution of roughness in the 10-year planning horizon is constructed using
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Monte-Carlo simulation. Figure (6) shows the distribution of facility's condition under different

rehabilitation actions.

Roughness after 10 years
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FIGURE 6 Roughness Distributions

Long-term Solution

To demonstrate the approach, the feasible actions are assumed to be the minimum, medium and high
intensity rehabilitation. The minimum rehabilitation action is the one that satisfies CVaR with minimum
cost. The transitional probabilities for each of these actions along with the cost of actions at each state
are generated. Table (1) and (2) show the cost of action in each state and optimal long-term risk-averse
rehabilitation actions, respectively, that are obtained by solving long-term model. As shown in Figure
(6), the increase in rehabilitation intensity will result in lower roughness variation in the long run. The
optimal solution shows many more maximum rehabilitation actions with minimum rehabilitation. This is
not surprising since intense rehabilitation will be more effective in reducing the variance of the

roughness.

TABLE 1 Cost of Rehabilitation Actions

State
Action

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Min 180 180 180 180 180 195 210 210 225 225 240 240 255 255 270 270
Mid 210 210 210 210 210 225 225 240 240 240 255 255 270 270 270 270
Max 240 240 255 255 255 255 255 270 270 270 270 285 285 285 285 285
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TABLE 2 Optimal Rehabilitation Actions

State 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Action Min Min Mid Mid Min Mid Max Mid Max Max Max Max Max Max Max

50
Max

Short-term Solution

Table (3) summarizes the comparison of the solution that each short-term model generated on the
network of 20 facilities with various initial conditions. As it can be seen in the table, the budget is limited
to 4.5S million that is below the required budget to maintain the network at 45 Ql. In the Knapsack
solution, there are few facilities with very poor quality while in the Minimax solution all facilities’ quality
is bounded by 60.95 but with a slightly higher total CVaR. Comparing the standard deviations of the two

solutions suggests a much better distribution of facility quality in the Minimax solution.

TABLE 3 Results of the Short-Term Models

Initial Condition Minimax Model Knapsack Model

Facility Index (Ql) Budget CVaR Budget CVaR
1 40 180 38 180 38
2 20 180 18.4 180 18.4
3 25 180 22 180 22
4 60 180 57.8 180 57.8
5 44 180 44.2 180 44.2
6 45 180 43.2 180 43.2
7 60 180 57.8 180 57.8
8 70 223 60.95 180 74.2
9 35 180 31.8 180 31.8
10 55 180 59.6 180 59.6
11 48 180 46.4 180 46.4
12 30 180 27.4 180 27.4
13 65 197 60.95 180 66
14 45 180 43.2 180 43.2
15 25 180 22 180 22
16 100 321 60.95 180 108.8
17 95 291 60.95 330 47.8
18 120 358 60.95 430 35.2
19 115 340 60.95 430 29.5
20 140 430 60.95 430 60.9

Sum 4500.00 938.45 4500.00 934.20

Standard Deviation 15.48 21.46
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CHAPTER 3: OPTIMAL NETWORK-LEVEL MOBILITY AND
CAPACITY EXPANSION DECISIONS

INTRODUCTION

The ultimate goal of transportation infrastructure planners is to provide the best possible level of service
to the network users. Major contributing factors defining the level of service are user travel time from
an origin to destination, the quality of pavement condition and network safety. In the last chapter,
pavement rehabilitation policies to guarantee certain level of pavement quality were discussed. In this
chapter, network mobility improvement consideration during capacity expansion is discussed. The goal
of, adding new capacity to the network is to improve the travel times along origin destination routs and
mitigate congestion. Any change in network condition (either change in capacity or considerable change

in pavement condition) will change the driver’s route choice or user equilibrium.

Assuming the availability of traffic information, drivers choose a path that minimizes their travel
time from an origin to destination. Increasing link capacity will improve travel time that can be
translated in user cost saving by considering the intrinsic value of time. The agency resources can be
allocated to maintain and/or improve the current pavement quality or resources can be use to expand
the network and simultaneously improve mobility and safety. The objective of this chapter is to build
and solve an optimization model to allocate resources for maximum mobility under uncertainty in

network travel demand.

NETWORK DESIGN PROBLEM

Network design problem (NDP) is the problem of finding optimal network expansion decisions for a
given network of transportation. In urban transportation networks, the path travel times are dependent
on path flows. Given multiple available paths that users can take, they take the shortest path from the
origin to the destination. However, when user flow in any given path exceeds a threshold, users start
considering other paths to their destination. The travel time on each link changes with the flow and
therefore, the travel time on several of the network paths changes as the link flow change. A stable

condition is reached only when no traveler can improve his travel time by unilaterally changing routs.
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The user equilibrium (UE) problem is looking to find the distribution of users among the possible paths.
NDP is formulated in a bilevel mathematical program framework where the upper level is the
minimization of the total system travel time and the lower level is the UE problem. In traditional NDP,
the travel demand between source and destination is assumed to be certain. However, transportation
networks are characterized by uncertainty. A robust network design problem should consider risk

associated with the uncertainty in the travel demand.

While user equilibrium solution is the best representation of traffic flow, the system optimal
traffic flow that represents the system’s minimum total traffic flow can also be used to determine traffic
flow. In a network without congestion, the UE and SO solutions are equal. However, it is proven that in
the worst case scenario the user equilibrium solution can be twice as bad as of the system optimal
solution. For comparison between system optimal and user optimal solution refer to LaBlanc and
Abdulla (23). User Equilibrium Network Design Problem is (UENDP) is computationally hard to solve.
However, a number of heuristic algorithms are suggested to solve the UENDP to reduce the
computational complexity (24). An alternative for UENDP is the system optimal network design problem
in which the solution represents optimal flow and expansion decisions such that the system total travel
time is minimized. Patil and Ukkusuri (25) have compared the SONDP and UENDP and shown that the
solution gap between the social cost of UENDP and SONDP is about 5% and the small difference justifies

use of SONDP. Model in (14)-(14c) is the user equilibrium problem formulation.

TRAVEL DEMAND UNCERTAINTY

Forecasting the travel demand for any given O-D pair requires careful consideration of different factors
like demographic, time of the day, etc. In most of the works in the literature on NDP travel demand for
O-D pairs are assumed deterministic. Demand on transportation networks depends on various uncertain
factors and for robust network-level decision making, the uncertainty in the travel demand should be
taken into consideration. To guarantee the robustness of the solution, using a risk measure that

appropriately reflects the uncertainly in travel demand is suggested.
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FIGURE 7 Travel demand under

To address the uncertainty in the travel demand for the origin destination pairs, is

introduced in the NDP to represent the risk associated with travel demand uncertainty between O-D
pairs in the SONDP problem. is defined as the average travel demand in  percent of worst

case demand scenarios. Figure (7) depicts

Notation and Model Formulation

The following notations are used in the rest of this report.

Sets

N set of nodes

A set of arcs

R set of origin nodes

S set of destination nodes

Krs set of paths connecting O-D pair r-s
Parameters

Flow on path k connecting O-D pair r-s;
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cr’ Travel time on path k connecting pair r-s;
qfs_cvaR Trip rate between origin r and destination s under f — CVaR level;
]T,i Indicator variable 1 if link a is on path k between O-D pair r-s, 0 otherwise;
Lu Lower and upper bounds on link expansion
K, Link capacity
T, Link performance function parameter
8, Dual of expansion cost

Decision Variables

Xq Flow on link j; v = (...,v;,...)
ta Travel time on link a; t = (..., t;,..)
Va Continous link expansion variable

LINK PERFORMANCE FUNCTION

The level of service offered by transportation network is a function of the usage of the network. Due to
congestion, the travel time on network links is an increasing function of flow. As a result, a link
performance function rather than a constant travel time measure should be associated with each of the
links representing the network. The performance function relates the travel time on each link to the
traversing this link. The Bureau of Public Roads (BPR) link cost function is used in this study. For a given

link a, we have:

x a
ca(Xq,Ya) = Tc(z) + Ba (K _:y )
a a
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USER EQUILIBRIUM

z(x) = Mian to(w) dw 14

Subject to
k (14a)

>0 (14c)

USER EQUILIBRIUM NETWORK DESIGN PROBLEM (UENDP)

Minz XqCa(Xq,Ya) + 2 0aYa (15)
a a
Subject to
<y, <u (15a)
x € X is USER Equlibrium (15b)

X = argmin z(x)

SYSTEM OPTIMAL NETWORK DESIGN PROBLEM (SONDP)

Formulation (16)-(16c) is the modified SONDP with 8 — CVaR on travel demand:

Min Z XaCa(xa. ya) + Z 0aYa (16)
a

a
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Subject to

k

(16a)

%, :ZZka” T VaeA
r s k (16b)
Ly, <y, S =0 (16c¢)

The biggest advantage of the SONDP formulation lies in its convexity property. The convexity
proof is straightforward: the objective function is concave assuming linear link improvement cost
function and constraints are all linear. The model can be solved to optimality by existing global non-
linear solvers like MINOS. The SONDP formulation is the best candidate to expand the NDP to enhance
safety and mobility. It provides flexibility in terms of adding new decision variables and/or constraints to

the model as long as the convexity of the model is intact.

Test Network

To demonstrate the approach described here, the following test network taken from literature is used.
The transportation network in Figure (8) has two O-D pairs (1,6), (6,1) with 16 links over 16 paths, of
which 8 links are considered for expansion. The travel demand for origin destinations of (1,6), (6,1) are
uncertain and normally distributed with N (u4, a;), N(uy, 03) respectively. The links that are considered
for expansion are (1,3), (2,1), (3,2), (3,5), (5,6), (6,4), and (6,5). Figure (8) shows the network

configuration, and link-specific data is displayed in table 4. In order to compare our results with optimal

B-CVaR _B—-CVaR

UENDP that is reported in literature, A6y d(61) are assumed to be equal to 20 and 10,

respectively.
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FIGURE 8 Transportation Network

TABLE 4 Data for the Test Network

Arc (a) T, Ba K, 0a
1 (1,2) 1.0 10.0 3.0 2.0
2 (1,3) 2.0 5.0 10.0 3.0
3 (2,1) 3.0 3.0 9.0 5.0
4 (2,3) 4.0 20.0 4.0 4.0
5 (2,4) 5.0 50.0 3.0 9.0
6 (3,1) 2.0 20.0 2.0 1.0
7 (3,2) 1.0 10.0 1.0 4.0
8 (3,5) 1.0 1.0 10.0 3.0
9 (4,2) 2.0 8.0 45.0 2.0
10 (4,5) 3.0 3.0 3.0 5.0
11 (4,6) 9.0 2.0 2.0 6.0
12 (5,3) 4.0 10.0 6.0 8.0
13 (5,4) 4.0 25.0 44.0 5.0
14 (5,6) 2.0 33.0 20.0 3.0
15 (6,4) 5.0 5.0 1.0 6.0
16 (6,5) 6.0 1.0 4.5 1.0
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SONDP WITH MINIMUM PATH TRAVEL TIME

As mentioned before, mobility is one of the major network quality indicators. If the travel time between
O-D pairs is taken as the network mobility indicator, the goal of transportation planners is to decrease
the travel time between O-D pairs for all users traveling on different paths over the same O-D pair. To
enhance mobility in the network during network expansion decisions, a new decision variable is
introduced to the model. TTX parameter is defined as the total travel time over all paths k € K that
connect the same O-D pairof rs; r € R,s € S. Formulation (17)-(17d) is a modification of SONDP that

yield the lowest travel time for all paths connection the same origin and destination.

Min Z X0Ca(Xa,Va) + Z 0.Va + Z Z TT,s (17)
a a r N

Subject to
rs _ B—CVaR

ka = lrs vr,s (17a)

k
xa=ZZka” ak Va€EA (17b)

r s k

Z ca(x0,¥)855 <TTXK VreRseS,keK (17¢)

a
<y, <u, s =0 (17d)

The model minimizes the upper bound on the travel time for all paths connecting the same
origin and destination. The goal of the model is to seek capacity expansion decisions under both
minimum expansion cost and travel time for O-D pairs. The solution to the model will decrease the
travel time and hence increase network overall mobility over O-D pairs with the smallest possible
expansion cost. The TT can be used as the basis for other strategic decisions. The benefit of this
solution will become more evident when in the next model TTX are treated as a parameter to the
model that solves for optimal expansion decisions that satisfies a constant TTX with restriction on link

capacity expansion.
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SONDP WITH CONSTANT PATH TRAVEL TIME

In the model (18)-(18d), the travel time between any origin and destination pair is considered as a given
parameter and the model is solved to determine the required expansion on each link that is considered
for expansion to achieve the required TTrks . The solution from the previous model is essential in setting
the TTTkS parameter for this model since the model in general is very sensitive to the parameter and
unrealistic TTX values would make it infeasible. In the numerical example, the model is solved to
determine capacity expansion required to equalize the travel time between the two origin and

destinations.

Minz xaca(xa,ya) + Z 0aYa (18)
a

a
Subject to

25m3=qﬁ*”R Vs
ke (18a)

- NN vach
r s k

(18b)

Z ca(xa,¥)855 <TTX VreRseS,kek (18¢)

a

(18d)
7S >0

The results of the model would provide transportation planners with the information on how
link capacity expansion cost and travel times are related. The model is very sensitive to the TTrlg values
and it becomes infeasible if TT,X parameters are not carefully selected. As mentioned before, the

system optimal minimum travel time solution from the previous model can be used as a basis to check
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the sensitivity of the capacity expansion cost to different TT/ values. Results from the three
formulations are summarized in table (5). The first column is the solution reported in literature as the
exact solution for the UENDP (24). To compare the results generated by any version of SONDP with the
optimal UENDP, the SONDP solution is solved by UE algorithm to find the social cost of the expansion

decisions. Figure 9a and 9b shows the travel time and cost for each model.

TABLE 5: Results

UENDP SONDP SONDP-VTT! SONDP-CTT?
Y X Y X Y X Y
1 0 1.139 0.000 1.020 0.000 0.225 0.000
2 461 8.861 2.950 8.980 3.124 9.775 4.300
3 9.86 14.713 8.528 14.936 9.026 16.898  12.848
4 0 1.386 0.000 1.223 0.000 0.000 0.000
5 0 1.039 0.000 1.020 0.000 0.375 0.000
6 7.71 5.287 10.699 5.064 10.166 3.102 5.710
7 0 0.000 0.000 0.000 0.000 0.150 0.000
8 0.59 8.961 0.000 8.980 0.000 9.625 19.927
9 0 16.000 0.000 16.159 0.000 16.898 0.000
10 0 0.000 0.000 0.000 0.000 0.216 0.000
11 0 1.039 0.000 1.020 0.000 0.159 0.000
12 0 4.000 0.000 3.841 0.000 3.102 0.000
13 0 15.237 0.000 15.528 0.000 5.359 0.000
14 1.32 8.961 0.000 8.980 0.000 9.841 0.964
15 19.14 0.762 0.000 0.631 0.000 11.539  15.426
16 0.85 19.238 20 19.369 20 8.461 6.858
0-D Travel 0-D (1,6): 20.64° 0-D (1,6): 20.48 0-D (1,6): 19
Time 0-D (6,1): 21.20 0-D (6,1): 19.88 0-D (6,1): 19
SO Cost N/A 508.98 509.61" 599.02
UE Cost 557.14 527.792 526.42 633.64

X: Flow Variable; Y: Expansion Variable

! System optimal network design problem with variable origin-destination travel time
2 System optimal network design problem with constant origin-destination travel time
* Maximum travel time over all paths connecting the O-D pair.

*549.97- 40.36 (TT1+TT2) = 509.61
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CHAPTER 4: OPTIMAL NETWORK-LEVEL SAFETY AND
CAPACITY EXPANSION DECISIONS

INTRODUCTION

Traffic safety is one of the network’s quality measures that often time is not taken into consideration
when network intervention decisions are made. Network capacity expansion and reconstruction provide
an excellent opportunity to improving overall safety levels. The goal of this chapter is to expand the
SONDP to include network safety enhancement. Safety can be defined in terms of the rate of accidents
that will result in passenger injury or property damage. Since capacity expansion decisions directly
influence the network flow, the relationship between safety enhancement and network flow or flow to

capacity ratio can is required to include safety enhancement in capacity expansion decisions.

NETWORK FLOW AND SAFETY

Figure (10) shows the relationship between accident rate and network flow and speed standard
deviation. Garber and Ehrart (26) ran regression analysis on different factors affecting accident rate and
showed a strong connection between speed variation and accident rate. It also shows that lower flow
per lane plays a modest role in accident reduction. It is logical to assume that higher flow would
automatically translate to lower speed variation. Figure (11) by Zhou and Sisiopiku (27) shows the
accident rate with respect to the ratio of flow to the link capacity in a highway segment for PDO
(property damage only) accidents and injury and fatal accidents. This relationship would better serve
this analysis since in SONDP model that is considered for link expansion decisions; flow/capacity is one

of the main components.

Network safety enhancement can be achieved along with network capacity expansion by either
minimizing PDO or injury accidents. Although, the two safety indicators (injury and PDO) can be
combined and treated as a single safety measure, they have been studied separately in this analysis to

show their effect on network flow.
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FIGURE 10 Crash Rate versus Standard Deviation of Speed and Flow per Lane

Source: Garber, N. J., Ehrhart, A.A. Effects of Speed, Flow and Geometric Characteristics on Crash Frequency for Two-Lane Highways
Transportation Research Record: Journal of the Transportation Research Board, No. 1981, Transportation Research Board of the
National Academies, Washington, D.C,2000.
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FIGURE 11 Accident rates v.s. v/c ratio for accidents involving injuries and fatalities and PDO accidents

Source: Patil, G. R, Ukkusuri, S. V. System- Optimal Stochastic Transportation Network Design In Transportation Research Record:
Journal of the Transportation Research Board, No. 2029, Transportation Research Board of the National Academies, Washington,
D.C, pages 80-86, 2007.
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MINIMIZING PDO ACCIDENTS

As figure (11) shows, the relationship between total PDO accident rates and v/c (flow/capacity) ratio is a

U-shaped function and PDO accidents are minimized when v/c ratio is in [0.5,0.6]. The formulation in

(19)-(19c) is suggested to minimize the deviation from the minimum PDO rate when link expansion

decisions are made

X
Mianc(x, ) +Z€ +Z g _ 55)2
aCa\Xa, Ya 4 aYa 4 (ka+3’a ) (19)

a

Subject to

S = af T s
K (19a)

xa=222fkrs gfk Va€eA (19b)
r s k

[ < <u
Y (19¢)

The rates of accidents involving injury and fatality, however, have a slightly decreasing trend as

v/c ratio increases and the lowest rate corresponds to high v/c ratios. The following model is suggested

to minimize the injury accident in the network while considering link expansion decisions in the

network. Table (6) summarizes the results from the model.
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TABLE 6: PDO Reduction Model Result

xa
X Y ko +Yq
1 1.16692 0 0.388974
2 8.83308 2.92124 0.683609
3 14.7134 8.54832 0.838451
4 1.40955 0 0.352387
5 1.04884 0 0.349613
6 5.2866 10.6776 0.417002

7 0 0 0
8 8.95116 0 0.895116
9 16.0049 0 0.355664

10 0 0 0
11 1.04884 0 0.52442
12 3.99513 0 0.665855
13 15.2459 0 0.346497
14 8.95116 0 0.447558
15 0.75898 0 0.75898
16 19.241 20 0.785348

MINIMIZING INJURY AND FATAL ACCIDENTS

The model in (20)-(20c) is formulated to minimize the injury accident in SONDP. Note that the model is
set to maximize the sum of flow/capacity ratio for all links. Adding sum of ratios as a constraint will
make the model infeasible due to flow restrictions and the only options is its addition to objective

function. The computational results are reported in Table (7).

X
Min ) xacalrae) + D 0aa = ),
in ) x4¢,(%q, Vo) 4 aYa ot (20)

a a

Subject to

—CVaR
ka“=CIfs “ovrns (20a)
K
x‘l:zzszrs ok Va€eA (20b)
r s k
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<y, <u

(20c)
k=0
TABLE 7: Injury Accident Rate Reduction Model Results
xa
X Y kq + Yo

1 1.22076 0 0.40692
2 8.77924 2.7849 0.686688
3 14.6972 8.47609 0.840988
4 1.44285 0 0.360714
5 1.06996 0 0.356652
6 5.30282 10.656 0.418997
7 0 0 0

8 8.93004 0 0.893004
9 15.9892 0 0.355316
10 0 0 0

11 1.06996 0 0.534978
12 4.01077 0 0.668462
13 15.2019 0 0.345497
14 8.93004 0 0.446502
15 0.787368 0 0.787368
16 19.2126 20 0.784189
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CHAPTER 5: SUMMARY AND CONCLUSIONS

Transportation networks are characterized by uncertainty that stems from different sources that should
be taken into consideration during strategic decision making. Defining and using appropriate risk
measures allows for robust decisions to be made whenever budget is restricted and/or network
intervention actions are needed. This research covers methods of finding risk-averse rehabilitation
decisions in a network of transportation infrastructure as well as optimal network-level safety and

mobility enhancements during capacity expansion considerations.

In Chapter 2, risk-based rehabilitation decisions with emphasis on maintaining the network
above a level of service define by risk are discussed. The long-term model is constructed based on the
MDP framework to minimize the cost of network rehabilitation actions such that a certain pavement
quality level is guaranteed. The risk-averse actions and transitional probabilities for the MDP model are
constructed from the probability distribution of facility at the end of planning horizon. The result of the
long-term model shows a gradual increase in rehabilitation intensity with increase in the roughness
level. This approach can be extended to include the Bayesian updating of deterioration distribution

function or parameters.

While developing long-term rehabilitation policies is important for transportation agencies, it is
even more important to address the short-term network level rehabilitation policies when resources are
not sufficient to implement the long-term optimal policies. Two short-term models that are used to
make resource allocation decisions are presented: a Minimax model to minimize the highest CVaR over
all facilities and a Knapsack model to minimize the total CVaR of all facilities subject to budget
restrictions. The results from the two models show that the first model generates a solution with a
lower variance across the network, but with slightly higher total quality level of roughness for all
facilities, while the Knapsack model gives a solution with a high variance among the facilities, but with
the total CVaR that is smaller compared to the first model. The magnitude of the difference between the
total CVaR of the two solutions is significantly smaller than of the differences in their variance, hence

implementing either model can be justified.

Transportation agencies can either chose to distribute their resources on the sole basis of
cost/benefit ratios, or base the recourse allocation decisions on narrowing the gap among the quality
level of facilities. Narrowing the quality gap can provide more consistency in pavement condition across

the network with the slightly higher cost. Comparing the results from Minimax and Knapsack models
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clearly indicates the advantage of the Minimax model over the Knapsack model since the small cost

saving that the Knapsack model offers does not justify the high variance in facility’s quality level.

Safety and mobility are two major factors in defining the service quality level for users of
transportation infrastructure. In Chapter 3, incorporating mobility, defined by minimum travel time over
all paths connecting O-D pairs, into capacity expansion decisions is discussed. Three models are
discussed to improve mobility in the network. SONDP that gives the system-optimal solution is based on
the risk constraints on network travel demand; SONDP-VTT that minimizes the upper bound on all paths
connecting the same O-D pair, and SONDP-CTT that takes the travel time on paths between O-D pairs as
parameter and yields the optimal network capacity expansion decisions. The results of the models
demonstrated how link capacity expansion cost and travel times are related. The computational results
showed that including mobility enhancements would only slightly increase the total cost. The solution

can also serve as the basis for further travel time reductions when budget restrictions are loose.

In Chapter 4, safety as an important network quality indicator is discussed and two models to
enhance safety during capacity expansion decisions are outlined. Previous research on the effect of
traffic flow on safety suggests that the relationship between total PDO and injury accident rates and v/c
(flow/capacity) ratio is a U-shaped function, and PDO accidents are minimized when v/c ratio is in [0.5,
0.6]. Two models are presented to reduce accident rate by changing the ratio of flow to the link capacity
in a highway segment for PDO (property damage only) accidents and injury and fatal accidents.
Computational results suggested that the solution of two models is slightly different with improved flow
to capacity ratio. The models can be extended to weight each factor and combine them into a single

factor based on link characteristics.
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